Name:	Signature:
545/2	
CHEMISTRY	
Paper 2	
S.4 midterm 1	
2 hours	

Uganda Certificate of Education

CHEMISTRY

Paper 2

2 hours

INSTRUCTIONS TO CANDIDATES:

Section A consists of 10 structured questions. Answer **all** questions in this section. Answers to this question(s) **must** be written in the spaces provided.

Section B consists of 4 semi – structured questions. Answer any **two** questions from this section. Answers to the questions **must** be written in the answer booklets provided.

SECTION A

- 1. The atomic numbers of elements **Q**, **R** and **T** are 2, 6 and 17 respectively;
 - (a) State;

	(i)	The group in the periodic table to which \mathbf{Q} belongs.	(½ mark)
•••••	(ii)	The period in the periodic table to which T belongs.	(½ mark)
(b)	Q is §	generally unreactive. Give a reason.	(01 mark)
(c)	State	one general property of elements in the group to which T dic table.	
(d)		n R combines with T , the compound formed is a liquid at s insoluble in water; Write the formula of the compound.	
		Suggest one reason why the compound is not soluble in	n water. (01 mark)
(a) for th	Zinc e reacti	carbonate and copper(II) nitrate were separately heated. on that took place. carbonate	

(b)	Concentrated sulphuric acid was added to c (i) State what was observed.	opper metal and the mixture heated, (1½ marks)
	(1) State What Was 00301 (Cal	(172 mes 165)
	(ii) Write an equation for the reaction the	nat took place. (1½ marks)
(a)	When water was added to solid X , a colour relights a glowing splint.	less, ordourless gas was evolved that
	(i) Name solid X .	(01 mark)
	(ii) Write an equation for the reaction the	nat took place. (1½ marks)
•••••		
(b)	State what would be observed if litmus pap in (a) above.	er was added to the resultant solution (01 mark)
(c)	Name any other substance that evolves a co	blourless gas in (a) above. (01 mark)

(a)	(a) An organic compound M contains 60% carbon, 13.30% hydrogen,				
	oxyge	en. Determine the empirical formula of \mathbf{M} .	(03 marks)		
	•••••				
	•••••				
•••	• • • • • • • • • • • •				
			•••••		
(b)) If the	molar mass of \mathbf{M} is 60g, determine the value of n in the form	nula		
	C_nH_{2n}	$_{n+1}OH.$ (02)	2 marks)		
•••	• • • • • • • • • • • •				
•••	• • • • • • • • • • • •				
A (a)		e of copper foil was dipped into a solution of silver nitrate; State what was observed.	(02 marks)		
	, (1)	State what was observed.	, ,		
	(ii)	Explain your observation in (a) (i) above.	(1½ marks)		
	•••••				

(b)	Write	e equation for the reaction that took place.	(1½ marks)
(a)	(i)	State what would be observed when a gas jar of amr over a gas jar containing hydrogen chloride gas.	monia was inverted (01 mark)
	(ii)	Write equation for the reaction that took place.	(1½ marks)
(b)	N ₂ (g) Calcu	egen reacts with hydrogen according to the following equal to the following equal to the following equal to the following equal to the substitution of a SNH ₃ (g) and the volume of ammonia produced at s.t.p when 44. The description of the following equal to the following eq	8 dm ³ of hydrogen
	rouck	ed completely with introgen (1 mole of a gas at sup occ	(2½ marks)
••••			
•••••			
•••••			

Chlo	rine gas	was bubbled through cold water until there was no further cha	nge.
(a)	State	what was observed	(01 mark)
	• • • • • • • • •		
(b)	Few	drops of litmus solution were added to a solution of chlorine in	water.
	State	what was observed.	(01 mark)
•••••			
			••••••
(c)		e equation for the reaction;	alasti a m
	(i)	Between aqueous chlorine and dilute potassium hydroxide so	(1½ marks)
	(ii)	That takes place when aqueous chlorine is exposed to sun lig	
(a)	(i)	An acid \mathbf{Q} , with the formula $H_xC_yO_z$.n H_2O contains 26.7%	
		2.2% hydrogen and 71.1% oxygen by mass. Determine the e formula of \mathbf{Q} (H=1, C=12, O=16)	mpirical (02 marks)
		Torintia of Q (11–1, C–12, O–10)	(02 marks)
•••••			
• • • • •			

Dete	rmine the values of x, y and z in the form	ala of Q . $(H_xC_yO_z =$	90)
			(1½ marks)
• • • • • • • • •			
		-	=
(i)			
		p	(02 marks)
• • • • • • • •			•••••
• • • • • • • •			
(ii)	Deduce the value of n .		(1½ marks)
• • • • • • • •			••••••
			•••••
	20.00 of a ((i)	20.0cm ³ of a solution containing 6.3g of Q per of a 0.1 M sodium hydroxide solution for com (i) Calculate the concentration of Q in mo	p

(a)	Write	e the structural formula of	
	(i)	ethene	(1 mark)
	(ii)	ethane	(1 mark)
(b)	(i)	Name one reagent which can be used to distinguish be ethane.	(1 mark)
	(ii)	State what would be observed if ethene was treated with	ith the reagent you
		have named in b (i) above.	(1 mark)
	•••••		
(c)	Write	e equation for the polymerization of ethene	(1 mark)
10 (a)		ute solution of copper(II) sulphate was electrolyzed for ser electrodes.	some time using
	(i)	To the anode.	(01 marks)

(b)		equation for the reaction that took place at the anode.	(1½ marks)
(c)	State; (i)	What was observed at the cathode?	
	(ii)	How the resulting solution would affect litmus paper after s	
		SECTION B Answer only two questions from this section.	
11. (a)		on dioxide can be prepared in the laboratory using calcium can ance T . Identify T and write equation leading to the formation of calcium the the three did of a labeled diagram, describe how you would sample of carbon dioxide starting from calcium carbonate.	arbondioxide. (2½ marks) prepare a dry
(b)		a bubbled through calcium hydroxide solution, carbon dioxide a white precipitate of calcium carbonate according to the follo- tion;	
	Ca(O	$H_{2}(aq) + CO_{2}(g)$ \longrightarrow $CaCO_{3}(s) + H_{2}O(l)$	
	carbo hydro	late the mass of dry calcium carbonate that would be obtained in dioxide measured at room temperature was bubbled through exide solution. ($Ca = 40$, $C=12$, $O=16$, 1 mole of a gas occupied temperature).	n calcium

(d) Burning magnesium was lowered into a jar of carbon dioxide. Write an equation of the reaction that took place. (1½ 12. (a) Describe how you would prepare dry crystals of zinc sulphate in the laboration (06 mag). (b) Zinc sulphate crystals were dissolved in water and the resultant solutions described in the control of the contro	marks, atory. rks) livided
(06 ma	rks) livided
•	livided
(b) Zinc sulphate crystals were dissolved in water and the resultant solutions d	
into three portions.	ıas
(i) To the first portion was added barium nitrate solution. State what w observed	ab
(ii) Write an equation for the reaction. (02 ma.)	rks)
(iii) To the second portion was added sodium hydroxide solution dropw until in excess. State what was observed and write equation(s) for the reaction(s) that took place. (3½ mag)	he
(c) To the third portion was added sodium carbonate;	
	1 mark
	marks
(iii) The product in (c) above was strongly heated. Name the residue for	
13. (a) Describe how nitric acid and can be manufactured using hydrogen and nitr raw materials. (Illustrate your answer with equations) $(10 \frac{1}{2})$	•
(b) Write equations to show the effect of heat on:	
(i) NH_4NO_3 (1 ½ max)	arks)
$(ii) \qquad \operatorname{Zn(NO}_3)_2 \qquad \qquad (1 \frac{1}{2} m)$	arks)
(c) Potassium nitrate was heated with concentrated sulphuric acid.	
Write equation for the reaction that took place $(1 \frac{1}{2})$ m	arks)

More carbon dioxide was bubbled through a mixture. State what was observed

(c)

- 14. a) State the difference between the following terms:
- i) Synthetic polymer and natural polymer (02 marks)
- ii) Thermosetting polymer and thermo softening polymer (or thermoplastic) (03 marks)
- b) i) State the conditions under which sulphuric acid can react with ethanol to produce ethane. (1.5 marks)
- ii) Write an equation leading to the formation of ethane. (01 mark)
- c) When reacted together, ethene molecules can form a polymer.
 - i) Name the polymer (01 mark)
 - ii) Write an equation leading to the formation of the polymer. (01 mark)
 - iii) State one use of the polymer. (01 mark)
- d) Name one;
 - i) Synthetic polymer other than the one you have named in c) above. (01 mark)
 - ii) Natural polymer other than rubber. (01 mark)
- e) State one
 - i) Use of each of the polymer you have named in d).
 - ii) Disadvantage of the polymer formed in c)(ii) . (02 marks)

END